Two-electron homoaromatics with heteroatom bridges

Yüksel Sahin ${ }^{\text {a }}$, Andreas Ziegler ${ }^{\text {b }}$, Thorsten Happel ${ }^{\text {a }}$, Harald Meyer ${ }^{\text {a }}$, Michael J. Bayer ${ }^{\text {b }}$, Hans Pritzkow ${ }^{\text {b }}$, Werner Massa ${ }^{\text {a }}$, Matthias Hofmann ${ }^{\text {b }}$, Paul von Ragué Schleyer ${ }^{\mathrm{c}, 1}$, Walter Siebert ${ }^{\mathrm{b}, *}$, Armin Berndt ${ }^{\mathrm{a}, *}$
${ }^{a}$ Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
b Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
${ }^{\text {c }}$ Computational Chemistry Annex, University of Georgia, Athens, GA 30602-2525, USA

Received 1 March 2003; accepted 29 April 2003

Dedicated to Professor Fred Hawthorne on the occasion of his 75th birthday

Abstract

Zwitterionic mono- and bis-homoaromatics $\mathbf{2 a}-\mathbf{f}$ and 5a comprised of positively charged $\mathrm{NMe}_{2}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ or $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ bridges and anionic three-center two-electron (3c2e) delocalized boron heterocyclic units, were prepared and characterized by NMR as well as by X-ray structure analyses. The boron chemical shifts of the trishomoaromatic dianion 12a with an oxygen bridge compare well with those computed ab initio for model 12b. Analysis of the electronic structure of the bishomoaromatic $\mathbf{5 u}$ and its anionic analog 11u gives insight into the origin of the trend of increasing effectiveness of $\mathrm{BC}_{2}, \mathrm{~B}_{2} \mathrm{C}$ and $\mathrm{B}_{3} 3 \mathrm{c} 2 \mathrm{e}$ bonds: higher electronegativity of carbon vs boron prevents symmetric delocalization in rings with $\mathrm{B}_{2} \mathrm{C}$ and especially BC_{2} centers.

(C) 2003 Elsevier Science B.V. All rights reserved.

Keywords: Ab initio computations; Boron heterocycles; Homoaromaticity; Three-center two-electron bonds; Zwitterions

1. Introduction

The concept of homoaromaticity [1] involving threecenter two-electron (3c2e) bonding was applied to the bis-homocyclopropenyl cation I [2], the tris-homocyclopropenyl cation II [3], and the (mono-)-homocyclopropenyl cation III [4] (Scheme 1) between 1956 and 1962. Recently, this class of homoaromatics with bridging CH_{2} and similar [5] groups bound by the usual twocenter two-electron (2c2e) bonds was extended by systems where the bridges involve 3c2e bonds [6]. Hydrogen, sp^{2}-carbon, or boron [7] atoms (cf. IV-VI), i.e. heteroatoms also can serve as nonclassical [6] homobridges. Heteroatoms as classical homobridges

[^0]for trishomoaromatic cations have been studied computationally [8].

We now present experimental examples of an unusual class of neutral mono- and bis-homoaromatics with charge compensated heteroatom homobridges bound classically by 2c2e bonds. Such zwitterionic species involving anionic aromatic boron heterocycles arise when the nitrogen, phosphorus or arsene bridging groups bear a positive charge. A dianionic trishomoaromatic with an oxygen homobridge is also described.

Scheme 1.

2. Results and discussion

2.1. Monohomoaromatic zwitterions with nitrogen, phosphorus and arsenic homobridges

The zwitterionic 1-azonium-2,4-diboretane-3-ides $\mathbf{2 a}, \mathbf{b}$ arose unexpectedly during our attempts to replace the chlorine atoms of $\mathbf{1}$ [9a] by amino substituents, using dimethylamine or pyrrolidine as reagents. A possible mechanism involves intermediate \mathbf{A}. The driving force for opening the four-membered ring, as shown, is the formation of the 3 c 2 e bond in the observed products $\mathbf{2 a}, \mathbf{b}$. Similarly, the zwitterionic 1-phosphonium-2,4-diboretane-3-ide 2c is obtained from $\mathbf{3}$ [9b] and $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ at $130{ }^{\circ} \mathrm{C}$, while $\mathbf{2 d}$,e and the 1 -arsonium-2,4-diboretane-3-ide $\mathbf{2 f}$ are formed at $25^{\circ} \mathrm{C}$ when diboriranides $\mathbf{4 a}, \mathbf{b}$ [10] are reacted with chlorodiphenylphosphane or chlorodiphenylarsane, respectively. Reaction of 2 e with lithium in diethyl ether yields the 1 -phospha-2,4-diboretane-3-ide 2g (Scheme 2).

The structures of $\mathbf{2 a}-\mathbf{d}$ were confirmed by X-ray structure analyses; those of $\mathbf{2 e}-\mathbf{g}$ follow from the similarity of the chemical shifts of their skeleton atoms (Table 1) with those of $\mathbf{2 d}$. For comparison the corresponding chemical shifts of the monohomoaromatic $\mathbf{2 h}$ [11] with a bis(trimethylsilyl)methylene homobridge are included in Table 1.

2.2. A bishomoaromatic zwitterion with an ammonium homobridge

The zwitterionic 1-azonium-2,5-diboracyclopentane-3-ide 5a is obtained when 6 [12] is reacted with bis(dimethylamino)borane. The structure of 5a is established by X-ray structure analysis. The ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ chemical shift of one of its skeleton atoms (-7 ppm) clearly indicates the presence of a pentacoordinate boron atom in solution. The formation of $\mathbf{5 a}$ requires a trimethylsilyl group to migrate from a carbon to a boron atom and a hydrogen atom to migrate from this boron atom to a neighboring carbon. By performing the reaction at low temperature in an NMR tube, we were able to identify two intermediates during this rearrangement. The nonclassical 1,2-diboracyclobutane [13] 7a is formed at $-50{ }^{\circ} \mathrm{C}$. Its structure is deduced from the chemical shifts (12.4 and 35.8) of its skeletal atoms as compared to those (14.8 and 40.9) of 7b, whose structure is proven by an X-ray analysis. Upon warming to $-10^{\circ} \mathrm{C}$, 7a rearranges into the zwitterionic 8a, characterized by a ${ }^{13} \mathrm{C}$-NMR signal at 236 ppm and a boron chemical shift of -5 ppm . Ab initio computations at the GIAO-SCF/6-31G*//MP2(fc)/6-31G* level yield very similar chemical shifts for $\mathbf{8 u} \quad\left(\delta^{13} \mathrm{C}=227\right.$ and $\left.\delta^{11} \mathrm{~B}=-7 \mathrm{ppm}\right)$. At $+10^{\circ} \mathrm{C}$, finally, $8 \mathbf{a}$ transforms into $\mathbf{5 a}$. This reaction is easily understood as a 1,2hydride migration from a formally negatively charged boron to a neighboring carbon atom whose partial

a: $R=M e$
b: $\mathrm{NR}_{2}=\mathrm{N}\left(\mathrm{CH}_{2}\right)_{4}$

3

a: $\mathrm{R}=\mathrm{Dur}, \mathrm{Met}=\mathrm{Li}$
b: $R=t B u, M e t=K$

d: $R=$ Dur $=2,3,5,6$-tetramethylphenyl, $E=P$
e: $R=t B u, E=P$
$f: R=t B u, E=A s$

Scheme 2.

Table 1
${ }^{11} \mathbf{B}$ and selected ${ }^{13} \mathrm{C}$-NMR spectroscopic data for $\mathbf{2 a - h}$

	$\mathbf{2 a}$	$\mathbf{2 b}$	$\mathbf{2 c}$	$\mathbf{2 d}$	$\mathbf{2 d}$	$\mathbf{2 f}$	$\mathbf{2 d}$
$\delta^{11} \mathbf{B}$	37	35	39	44	47	54	38
$\delta^{13} \mathrm{C}$	151	153	-	179.0	171.2	156.9	140.8
$J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)$	-	-	-	79	82	-	37

positive charge is indicated by its strong deshielding ($\delta^{13} \mathrm{C}=236$ in 8a) (Scheme 3).

The rearrangement of 7 a into $\mathbf{8 a}$ can be explained by isomerization of the nonclassical 7a to the classical B (the corresponding opening of unsubstituted $7 \mathbf{u}-\mathbf{B u}$ requires only $6.7 \mathrm{kcal} \mathrm{mol}^{-1}$ at the MP2/6-31G* level). This is followed by attack of the nitrogen of the hydrogen-bearing boron group at the boron atom of the three-membered ring to yield the bishomoaromatic zwitterion \mathbf{C}. Migration of a trimethylsilyl group in \mathbf{C} to the neighboring ring carbon leads to the bishomoaromatic zwitterion \mathbf{D} which, by further migration of the same silyl group, gives 8a.

The homoaromatic stabilization energy HSE of $\mathbf{5 u}$, defined as the energy difference between $\mathbf{5 u}$ and the planar form 5u* containing a $2 \mathrm{c} 2 \mathrm{e} \mathrm{B}=\mathrm{C}$ double bond, was computed at the MP4/6-311+G**/MP2/6-311+ $\mathrm{G}^{* *}$ level to be $-22.5 \mathrm{kcal} \mathrm{mol}^{-1}$. This HSE is between those of $\mathbf{9 u}(-33.1)$ and $\mathbf{1 0 u}\left(+4.5 \mathrm{kcal} \mathrm{mol}^{-1}\right.$, both at the same level). To elucidate the influence of the positively charged homobridge of $\mathbf{5 u}$ on the HSE, we computed 11u with an uncharged methylene bridge and 11u*. The HSE of $-19.9 \mathrm{kcal} \mathrm{mol}^{-1}$ shows that the influence of a positively charged nitrogen homobridge on the degree of homoaromaticity is rather small.

NBO analyses of the electronic structures of $\mathbf{5 u}$ and 11u reveal why isoelectronic boron heterocycle structures (containing formally a $2 c 2 e \pi$ bond and an electron deficient center) are strongly dependent on the number of ring boron atoms: monocyclic derivatives of 10u have undistorted rings with a $\mathrm{C}=\mathrm{C}$ bond [14], whereas derivatives of $\mathbf{9 u}$ [15] and $\mathbf{5 a}$ (analogs of 11u) possess strongly distorted rings due to the 3c2e bonds. Scheme 4 shows the distribution of the cyclically delocalized electrons over the centers of the 3 c 2 e bond as given by NBO analyses.
In $\mathbf{1 0 u}, 84 \%$ of the electrons of the 3 c 2 e bond are localized at the carbon atoms, only 16% are found at the boron center. In $9 \mathbf{u}$, however, the electrons involved in the 3c2e bonding are symmetrically delocalized over the three boron centers. Both $\mathbf{5 u}$ and $\mathbf{1 1 u}$ are in between: more than 50% of the electrons of the 3c2e bonds are localized at carbon. Evidently, the electronegativities of C and B (2.5 and 2.0, respectively) are decisive. Cyclic delocalization is rather small in 10u; hence, the gain in energy in forming the 3 c 2 e bond is smaller than the energy required for distortion of the five-membered ring into the geometry characteristic for bishomoaromatic systems. As a consequence, all known monocyclic 1-boracyclopent-3-enes $\mathbf{1 0}$ possess structures without 3c2e

Scheme 3.

Scheme 4.
bonds. This is indicated by their ${ }^{11} \mathrm{~B}$ NMR chemical shifts ($92-96 \mathrm{ppm}$, characteristic of tricoordinate boron atoms) and is proven by the X-ray analysis of 1 -phenyl-3,4-dimethyl-3-borolene [14b]. Only bicyclic systems, which suffer from ring strain in classical conformations, favor bishomoaromatic structures [16]; these have chemical shifts (-7 to -9 ppm) characteristic of pentacoordinate boron atoms.

2.3. A trishomoaromatic dianion with an oxygen homobridge

The trishomoaromatic dianion [17] with an oxygen homobridge, 12a, was generated by reduction of 1-oxa-

2,4,6-triboracyclohexane 13a with excess lithium naphthalenide in THF at $-60^{\circ} \mathrm{C}$. Compound 13a was obtained by protonation $\left(\mathrm{HCl}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ of the dianion 14a, which was synthesized by reduction of 15a (prepared from $\mathbf{1 5 b}$ [18] and $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$) (Scheme 5).
The structures of $\mathbf{1 4 a} \cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}$ and the stereoisomer 13b of 13a were proven by X-ray structure analyses. The structures of $\mathbf{1 5 a}$ and 13a follow from the similarity of the chemical shifts of their skeletal atoms with those of $\mathbf{1 3 b}$ and $\mathbf{1 5 b}$. The structure of $\mathbf{1 5 b}$ also was established by X-ray structure analysis [18]. The trans-configuration of 13a is evident from an ABmultiplet for the protons of the methylene group as a consequence of the chiral centers at C3 and C5.
The ${ }^{11} \mathrm{~B}$-NMR spectrum of dianion 12a, which could be observed only at temperatures below $-40^{\circ} \mathrm{C}$, is shown in Fig. 1. Three sharp signals at $-12.1,-15.3$ and -23.9 ppm as compared to $\delta^{11} \mathrm{~B}=-29.2 \mathrm{ppm}$ for 12c, the trishomoaromatic structure of which is established by an X-ray analysis [17], strongly hint at similar structures for 12a and 12c. Deshielding of the boron atoms of 12a bound to oxygen is to be expected as an electronegativity effect. Additional support for the trishomoaromatic nature of 12a was obtained by ab initio computations of the chemical shifts of model 12b. The results obtained at the GIAO-SCF/6-31+G*// B3LYP/6-31 $+\mathrm{G}^{*}$ and GIAO-B3LYP/6-31+G*// B3LYP/6-31 $+\mathrm{G}^{*}$ levels shown in Fig. 2 are in convincing agreement with the experimental data.

3. Structures

Compounds $\mathbf{2 a} \mathbf{- d}$ (Figs. 3-5) are the first homoaromatic ring systems with heteroatoms bridging two boron centers. All show folded four-membered rings with B1$\mathrm{C} 1-\mathrm{B} 2-\mathrm{N} 1$ or $\mathrm{B} 1-\mathrm{C} 1-\mathrm{B} 2-\mathrm{P}$ torsion angles between 26.2(2) and 19.2(3) (see Table 2). The $\mathrm{C} 1-\mathrm{B} 1$ and $\mathrm{C} 1-$

Scheme 5.

Fig. $1 .{ }^{11} \mathrm{~B}-\mathrm{NMR}$ spectrum of $\mathbf{1 2 a}$ in THF at $-60^{\circ} \mathrm{C}$.

12a

12b

Fig. 2. Experimental and computed (GIAO-SCF/6-31G*//B3LYP/6$31+\mathrm{G}^{*}$ in italics and GIAO-B3LYP/6-31+G*//B3LYP/6-31+G*) ${ }^{11} \mathrm{~B}$ chemical shifts of $\mathbf{1 2 a}$ and model $\mathbf{1 2 b}$, respectively.

Fig. 3. Molecular structure of $\mathbf{2 a}$ in the crystal, H -atoms omitted for clarity; selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$ completing Table 2. B3-N2 142.3(2), C1-B2-N1 98.2(1), B1-C1-B2-B3 25.7(2).

Fig. 4. Molecular structure of $\mathbf{2 c}$ in the crystal, H -atoms omitted for clarity; selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$ completing Table 2. B2-P2 192.4(3), B1-Cl1 179.3(3), P1-Si1/Si2 226.3(1)/226.8(1), P2Si3/Si4 224.5(1)/224.7(1), C1-B2-P1 96.7(2), C1-C2/B1-C1-B2 84.2(2).

Fig. 5. Molecular structure of $\mathbf{2 d} \cdot \mathrm{Et}_{2} \mathrm{O}$ in the crystal, H -atoms $\mathrm{Et}_{2} \mathrm{O}$ omitted for clarity; selected bond lengths (pm) and angles (${ }^{\circ}$) completing Table 2. B1-C10 158.1(5), B2-C20 158.9(5), C2-Si < 189.1(4) >, $\mathrm{P} 1-\mathrm{C}<181.0(3)>, \mathrm{C} 1-\mathrm{B} 2-\mathrm{P} 192.3(2), \mathrm{C} 30-\mathrm{P} 1-\mathrm{C} 36$ 104.1(2) (average over both molecules, labels of molecule 1).

B2 bond lengths are short due to additional bonding by the 3c2e bond which also explains the short transannular B1 \cdots B2 distance in 2a (as in $\mathbf{2 h}$ [11]). The longer $\mathrm{B} 1 \cdots \mathrm{~B} 2$ distances in $\mathbf{2 c}, \mathbf{d}$ are the consequence of inherently longer bonds to phosphorus. The small angles at N1 and P1 are characteristic for homobridges (compare this feature in $\mathbf{2 h}$). The B1 and B2 distances to N1 and P1 indicate single bonds to the bridging atoms. NBO analyses of the prototype molecules $2 \mathbf{u N}$ and $\mathbf{2 u P}$ (type 2d,e molecules without any substituents) show the presence of 3c2e bonds between C1, B1 and B2, i.e. both are homoaromatic systems.
The crystal structure of $\mathbf{5 a}$ (Fig. 6) shows a strongly distorted five-membered ring with short transannular B2 $\cdots \mathrm{C} 1$ (182.8(2) pm) and B2 \cdots B1 (198.2(3) pm) distances, small angles at the homobridges ($\mathrm{B} 1-\mathrm{N} 1-\mathrm{B} 2$: $\left.77.6(1)^{\circ}, \mathrm{C} 1-\mathrm{C} 2-\mathrm{B} 2: 71.3(1)^{\circ}\right)$, and an interplanar angle of $84.6(8)^{\circ}$ between the best plane through $\mathrm{N} 1-\mathrm{B} 1-\mathrm{C} 1-$ C 2 and the plane $\mathrm{N} 1-\mathrm{B} 2-\mathrm{C} 2$. MP2/6-31 $+\mathrm{G}^{*}$ computations for $\mathbf{5 u}$ gave transannular distances of 174.3 and 187.8 pm , angles at the homobridges of 73.4 and 69.0° and an interplanar angle of 85.1°. For planar 5u* the corresponding data are 242.4 and 250.7 pm and 104.6 and 104.3°. The deformations in $\mathbf{5 u}$ (and 5a) as compared to $\mathbf{5 u} \mathbf{u}^{*}$ are characteristic of bishomoaromatic five-membered rings [19]. Considerably longer transan-

Table 2
Selected bond lengths (pm), and angles $\left({ }^{\circ}\right)$ for $\mathbf{2 a}, \mathbf{c}, \mathbf{d}$ (experimental) and $\mathbf{2 u N}, \mathbf{2 u P}$ (computed at the B3LYP/6-311+G** level)

	2a	2c	2d	2uP	2uN
B1-C1	148.9(2)	146.0(4)	149.9(5)	148.0	146.2
B2-C1	148.7(2)	148.3(3)	150.4(5)	148.0	146.2
B1-X	$159.6(2)^{\text {a }}$	$192.7(3)^{\text {b }}$	$193.3(4){ }^{\text {b }}$	$195.9{ }^{\text {b }}$	$158.3{ }^{\text {a }}$
B2-X	$159.0(2)^{\text {a }}$	200.9(3) ${ }^{\text {b }}$	$193.3(4)^{\text {b }}$	$195.9{ }^{\text {b }}$	$158.3{ }^{\text {a }}$
$\mathrm{C} 1-\mathrm{B} 3$ (C2)	156.4(2)	150.3(3)	153.4(4)	-	-
B1 \cdots B	189.5(2)	209.5(4)	226.4(5)	226.6	193.1
$\mathrm{B} 1-\mathrm{C} 1-\mathrm{B} 2$	78.8(1)	90.8(2)	97.9(3)	99.9	82.6
$\mathrm{B} 1-\mathrm{X}-\mathrm{B} 2$	$73.0(1)^{\text {a }}$	$64.3(1)^{\text {b }}$	71.7(2) ${ }^{\text {b }}$	$70.7{ }^{\text {b }}$	$74.6{ }^{\text {a }}$
C1-B1-X	98.3(1) ${ }^{\text {a }}$	101.1(2) ${ }^{\text {b }}$	$92.5(2){ }^{\text {b }}$		
$\mathrm{B} 1-\mathrm{C} 1-\mathrm{B} 2-\mathrm{X}$	26.2(2) ${ }^{\text {a }}$	$21.6(2){ }^{\text {b }}$	19.2(3) ${ }^{\text {b }}$		
$\mathrm{C} 1-\mathrm{B} 1-\mathrm{B} 2-\mathrm{X}$	147.1(2) ${ }^{\text {a }}$	$153.8(2)^{\text {b }}$	$154.9(3){ }^{\text {b }}$	$154.6{ }^{\text {b }}$	$151.8{ }^{\text {a }}$

$$
\begin{aligned}
& \mathrm{a} \quad \mathrm{X}=\mathrm{N} 1 \\
& \mathrm{~b} \quad \mathrm{X}=\mathrm{P} 1
\end{aligned}
$$

Fig. 6. Structure of 5a in the crystal, most H -atoms omitted for clarity; selected bond lengths (pm) and angles $\left(^{\circ}\right): \mathrm{C} 1-\mathrm{B} 1147.9(3), \mathrm{C} 1-\mathrm{B} 2$ 182.8(2), C1-C2 155.6(2), C1-Si1 186.6(2), B1-N1 156.9(2), B1‥B2 198.2(3), B1-C10 158.6(3), N1-B2 159.6(3), B2-C2 158.0(3), B2-Si2 202.3(2), C2-B3 157.5(3), B3-N2 140.2(2), B3-C20 160.3(3); B1-C1B2 72.8(1), C1-B1-N1 106.9(2), B1-N1-B2 77.6(1), N1-B2-C1 91.1(1), C2-C1-B2 55.0(1), C1-B2-C2 53.7(1), C1-C2-B2 71.3(1); $\mathrm{B} 2-\mathrm{C} 1-\mathrm{B} 1-\mathrm{N} 1-26.3(1), \mathrm{C} 1-\mathrm{B} 1-\mathrm{N} 1-\mathrm{B} 2$ 29.8(2), $\mathrm{C} 1-\mathrm{B} 1-\mathrm{B} 2-\mathrm{N} 1$ -147.4(2), B1-C1-B2-C2 143.1(2), C1-B2-C2-B3-133.6(2).
nular distances in $\mathbf{5 a}$ as compared to $\mathbf{5 u}$ can be explained by the steric repulsion of the three large substituents at the centers of the 3c2e bond in $\mathbf{5 a}$.

Compound 7b (Fig. 7) is the first nonclassical 1,2diboretane [13] with an amino substituent at only one of the skeleton boron atoms. 1,2-Diboracyclobutanes with amino substituents at both boron atoms, like 1,2-diamino-1,2-diboracyclopentanes [20], have classical structures [21]. The transannular C1 $\cdots \mathrm{B} 2$ distance of 7b, shorter (167.4(2) pm) than in 7c [13] (172.3(3) pm) with two duryl substituents at the ring boron atoms, indicates a rather strong 3c2e bond. B1-C1 (150.8(2) pm in 7 b) is slightly longer than in $7 \mathrm{c}(147.2(3) \mathrm{pm})$. Surprisingly, the B1-N1 distance (138.6(2) pm, compare the internal standard $140.4(3) \mathrm{pm}$ for $\mathrm{B} 3-\mathrm{N} 2$) is characteristic of partial $\mathrm{B}-\mathrm{N}$ double bonds [22]. Thus

Fig. 7. Structure of $\mathbf{7 b} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$ in the crystal, most H -atoms omitted for clarity; selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$: $\mathrm{C} 1-\mathrm{B} 1$ 150.8(2), C1-B2 167.4(2), C1-B3 158.6(2), C1-C2 159.6(2), B1-B2 181.6(3), B1-N1 138.6(2), B1-H1 131(2), B2-H1 136(2), B2-C2 160.3(3), B2C10 159.9(3), C2-Si1/Si2 188.9(2)/188.5(2), B3-N2 140.4(3); C1-B1B2 59.6(1), B1-C1-C2 106.1(1), B1-C1-B2 69.4(1), B1-B2-C2 92.9(1), B1-B2-C1 51.0(1), C2-C1-B2 58.7(1), C2-B2-C1 58.2(1), $\mathrm{C} 1-\mathrm{C} 2-\mathrm{B} 2$ 63.1(1), $\mathrm{C} 1-\mathrm{B} 3-\mathrm{N} 2123.2(2) ; \mathrm{B} 1-\mathrm{C} 1-\mathrm{B} 2-\mathrm{C} 2125.3(1)$, C1-B1-C2-B2 103.9(2), C1-B1-B2-H1-153(1), B1-C1-B3-N2 37.0(3).

B 1 is involved in the 3c2e B1, C1, B2 bond (as well as the B1, H, B2 bond) despite of its partial double bond to N 1 . The sum of the angles around N1 is 360.0°.
The conformation of $\mathbf{1 3 b}$ is distinctly different from that of 13c [23] with donor substituents at all boron atoms and methyl instead of trimethylsilyl groups at the ring carbon atoms (Fig. 8). While 13c is strongly folded along the $\mathrm{B} 1-\mathrm{B} 2$ axis, thus containing an almost planar five-membered ring, 13b is a flat chair: the $\mathrm{C} 1, \mathrm{~B} 1, \mathrm{~B} 2$, O1 plane (maximum deviation from the best plane 0.8 pm) has angles of $24.3(2)$ and $10.5(2)^{\circ}$, respectively, with the $\mathrm{B} 1, \mathrm{C} 2, \mathrm{~B} 2$ and $\mathrm{C} 1, \mathrm{O}, \mathrm{B} 3$ planes. All ring $\mathrm{C}-\mathrm{B}$ bonds in 13b are shorter than the corresponding bonds in 13c. The bond distances of the silicon atoms bound to the ring are distinctly longer than in the exocyclic $\mathrm{H}_{2} \mathrm{C}-$ Si bond. All these findings can be explained by

Fig. 8. Structure of 13b in the crystal, duryl residue at B 2 and most H atoms omitted for clarity; selected bond lengths (pm) and angles $\left(^{\circ}\right.$): B1-C1 157.5(3), B1-C2 158.2(2), B1-C3 157.6(2), C1-B3 157.3(2), C1-Sil 191.6(2), B3-O1 138.7(2), B3-C30 1.583(3), O1-B2 138.6(2), B2-C2 156.0(2), B2-C20 159.3(2), C2-Si2 190.9(4), C3-Si3 187.7(8); C1-B1-C2 118.0(1), B1-C1-B3 115.9(1), B3-O1-B2 127.1(1), O1-B2-C2 120.2(1), B2-C2-B1 112.6(1); B3-C1-B1-C2-21.6(2), B1$\mathrm{C} 1 \cdots \mathrm{O} 1-\mathrm{B} 3-169.0(2), \mathrm{C} 1-\mathrm{B} 1 \cdots \mathrm{~B} 2-\mathrm{C} 2-155.2(2)$.

Fig. 9. Structure of $\mathbf{1 4 a} \cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}$ in the crystal, H -atoms and duryl residues omitted for clarity; selected bond lengths (pm) and angles (${ }^{\circ}$): B1-O1 144.1(8), B1-C1 150(1), B1-C20 159.5(8), C1-B3 155.1(8), C1-Sil 185.6(6), B3-C2 155.7(9), B3-C3 161.0(8), C2-B2 151.4(9), C2-Si3 184.6(6), B2-O1 146.2(7), B2-C30 158(1), Li1-O1 196(1), Li1-O2 196(1), Li1-O3 195(1), Li2-O4 193(1), Li2. . C1 222(1), Li2. . B3 230(1), Li2 ‥C2 221(1), Li2…B1 265(1), Li2 …B2 266(1), Li2 …O1 285(1); O1-B1-C1 121.4(5), B1-C1-B3 114.0(5), C1-B3-C2 116.6(5), $\mathrm{B} 3-\mathrm{C} 2-\mathrm{B} 2$ 117.1(5), C2-B2-O1 117.4(6); B2-O1-B1-C1 $-5.0(8), \mathrm{O} 1-\mathrm{B} 1-\mathrm{C} 1-\mathrm{B} 3-15.9(8), \mathrm{B} 1-\mathrm{C} 1-\mathrm{B} 3-\mathrm{C} 234.2(7), \mathrm{B} 1-\mathrm{C} 1 \cdots$ C2-B3-149.1(7), B3-C2-B2-O1 12.5(8).
hyperconjugation of ring $-\mathrm{C}-\mathrm{Si}$ bonds with two neighboring boron atoms.

The salt $\mathbf{1 4 a} \cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}$ is a contact triple ion (Fig. 9). Li1 is coordinated to two ether molecules and to O1, Li 2 to the remaining atoms of the central ring and to one $\mathrm{Et}_{2} \mathrm{O}$. While the $\mathrm{Li} 2-\mathrm{C} 1$ (222(1) pm), $\mathrm{Li} 2-\mathrm{C} 2$ (221(1) pm) and Li2-B3 (230(1) pm) distances are comparable to those in aromatic diboratabenzene dianions [16b,24], Li2-B1 and Li2-B2 (265(1) and 266(1) pm) are considerably longer. $\mathrm{C} 1, \mathrm{~B} 1, \mathrm{O} 1, \mathrm{~B} 2, \mathrm{C} 2$ of the central ring lie almost in one plane, but the folding along the $\mathrm{C} 1-\mathrm{C} 2$ axis is $30.1(7)^{\circ}$. This reduces steric hindrance between the substituent at B3 and the trimethylsilyl substituents at C 1 and C 2 .

Computations of unsubstituted $\mathbf{1 4 u}$ without counter ions lead to a planar six-membered ring. Despite being
isoelectronic with the pyrylium cation, $\mathbf{1 4 u}$ is not aromatic as indicated by its NICS value of 0.8 at the center of the ring. This is reminiscent of the findings for borazine and boroxine [25]. Differences in electronegativity of the centers of cyclic delocalization are responsible for the deviation from the Hückel rule. Differences in electronegativity also are the reason for the nonhomoaromatic nature of $\mathbf{1 0 u}$ despite being isoelectronic with the strongly homoaromatic $\mathbf{5 u}, \mathbf{9 u}$ and $\mathbf{1 1 u}$. As is to be expected: aromaticity and homoaromaticity are governed by the same principles!

4. Conclusions

The properties of two-electron homoaromatics with heteroatom bridges are similar to those of the corresponding species with methylene bridges. The realization of the first bishomoaromatic with a delocalized bond between two boron and one carbon center ($\mathrm{B}_{2} \mathrm{C}$) completes the 3c2e boron-carbon series. The other members of this set have $C_{3}, B C_{2}$, and B_{3} centers, although some of the known examples involve bicyclic systems. Computations on prototype models show that the homoaromatic stabilization energies decrease with the number of carbon centers due to the higher electronegativity of carbon than boron. The high electronegativity of oxygen precludes effective cyclic electron delocalization (aromaticity) in 1-oxa-2,4,6-tri-boracyclohexane-diide, the isoster of the aromatic pyrylium cation.

5. Experimental

5.1. General

Reactions were carried out under dry argon or nitrogen, using standard Schlenk techniques. Solvents were dried, distilled, and saturated with nitrogen. Glassware was dried with a heat-gun in high vacuum. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-NMR: Bruker DRX 200 spectrometer and Bruker AC 500, ${ }^{11}$ B-NMR: Bruker DRX 200 spectrometer, NMR references are $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. Mass spectra were obtained with a ZAB-2F VH Micromass CTD spectrometer, high resolution mass spectra with a Joel MS Station JMS-700 spectrometer. Melting points (uncorrected) were measured with a Büchi apparatus using capillaries, which were filled under argon or nitrogen and sealed.
5.2. 3-\{Dimethylamino-
[bis(trimethylsilyl)(dimethylamino-chloro-
boryl)methyl]boryl\}-1-bis(trimethylsilyl) azonium-2,4-bis(t-butyl)-2,4-diboretane-3-ide (2a)

To a solution of $200 \mathrm{mg}(0.43 \mathrm{mmol})$ of $\mathbf{1}$ in 10 ml of hexane 0.8 ml of dimethylamine were added at $-30^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature (r.t.) and was refluxed for 3 h . After filtration of insoluble salts the solvent was reduced and the solution cooled to $-80{ }^{\circ} \mathrm{C}$ to yield colourless crystals, m.p.: $145-147{ }^{\circ} \mathrm{C}$ (dec.). Yield: 144 mg (68% 2a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($200 \mathrm{MHz},\left[d_{8}\right]$-toluene, 313 K) $\delta=0.41$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), $1.04\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CMe}_{3}, 2.48\right.$ (s, 3H, NMe), 2.58 (s, 3 H , NMe), 2.70 (s, 6H, NMe), 2.73 (s, 3H, NMe), 2.90 (s, $3 \mathrm{H}, \mathrm{NMe}),{ }^{11} \mathrm{~B}-\mathrm{NMR}\left(64 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=43,37(1: 3)$, ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.0\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 4.9(\mathrm{q}$, SiMe_{3}), $6.8\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 7.3\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 8\left(\right.$ br. s, $\left.\mathrm{CB}_{3}\right), 22$ (br. s, CMe_{3}), $30.0\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 30.6\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 30.8(\mathrm{~s}$, CMe_{3}), 32.2 ($\mathrm{s}, \mathrm{CMe}_{3}$), 37 (br. s, CB_{2}), 41.3 (q, NMe), 42.7 (q, NMe), 44.4 (q, Me), 44.6 (q, Me), 45.0 (q , NMe_{2}), 58.1 (q, NMe_{2}), CI-MS m / z (\%): 495 (23) [$\left.\mathrm{M}^{+}\right]$, 460 (100) [$\left.\mathrm{M}^{+}{ }^{-} \mathrm{Cl}\right]$, HR-MS (EI): $m / z 438.3225\left[\mathrm{M}^{+}{ }_{-}\right.$ CCH_{3}], Calc. ${ }^{12} \mathrm{C}_{18}{ }^{1} \mathrm{H}_{45}{ }^{11} \mathrm{~B}_{4}{ }^{35} \mathrm{Cl}_{1}{ }^{14} \mathrm{~N}_{3}{ }^{28} \mathrm{Si}_{2}$: 438.3213, ($\Delta=1.2 \mathrm{mmu}$).

5.3. 3- \{Pyrrolidino-[bis(trimethylsilyl)(pyrrolidino-chloro-boryl)methyl]boryl\}-1-
 bis(trimethylsilyl) azonium-2,4-bis(t-butyl)-2,4-diboretane-3-ide (2b)

Tree hundred and three milligram (4.26 mmol) of pyrrolidine were added to a solution of $250 \mathrm{mg}(0.53$ mmol) of $\mathbf{1}$ in 15 ml of hexane at $-50^{\circ} \mathrm{C}$. The mixture was allowed to warm to r.t. and then was refluxed over night. After filtration of insoluble salts the solvent and volatile compounds were removed in vacuum and an orange solid was crystallized from toluene. Yield: 210 $\mathrm{mg}(58 \%), \mathbf{2 b} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz},\left[d_{8}\right]\right.$-toluene) $\delta=$ 0.23 (s, SiMe_{3}), 0.29 ($\mathrm{s}, \mathrm{SiMe}_{3}$), 0.37 ($\mathrm{s}, \mathrm{SiMe}_{3}$), 0.59 (s , SiMe_{3}), $1.09\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 1.10\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 1.19\left(\mathrm{~s}, \mathrm{CMe}_{3}\right)$, $1.56\left(\mathrm{~m}, \mathrm{NCH}_{2}\right), 2.96-3.74\left(\mathrm{~m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right),{ }^{11} \mathrm{~B}-\mathrm{NMR}$ ($64 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta=44,35$ (3:1), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (50 MHz , [d_{8}]-toluene) $\delta=3.7\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 5.1\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 6.5(\mathrm{q}$, SiMe_{3}), 6.6 ($\mathrm{q}, \mathrm{SiMe}_{3}$), 24.2 ($\mathrm{t}, \mathrm{NCH}_{2}$), 24.7 ($\mathrm{t}, \mathrm{NCH}_{2}$), $25.2\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 25.7\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 25.8\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 26.2(\mathrm{t}$, $\left.\mathrm{NCH}_{2}\right), 26.9\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 27.1\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 27.2\left(\mathrm{t}, \mathrm{NCH}_{2}\right)$, $28.0\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 29.7\left(\mathrm{q}, \mathrm{CMe}_{3}\right), 30.4\left(\mathrm{q}, \mathrm{CMe}_{3}\right), 31.1(\mathrm{q}$, $\left.\mathrm{CMe}_{3}\right), 48.9\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 49.8\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 50.1(\mathrm{t}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 50.3\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 50.4\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, 50.9 ($\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $51.1\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 52.4(\mathrm{t}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 68.5\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), \mathrm{CB}$ not observed,-CI-MS m/z (\%): 574 (1) [M $\left.{ }^{+}\right],-\mathrm{HR}-\mathrm{MS}$ (EI): m / z $516.3702\left[\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, Calc. ${ }^{12} \mathrm{C}_{24}{ }^{1} \mathrm{H}_{51}{ }^{11} \mathrm{~B}_{4}{ }^{35} \mathrm{Cl}_{1}$ ${ }^{14} \mathrm{~N}_{3}{ }^{28} \mathrm{Si}_{2}: 516.3722(\Delta=2.0 \mathrm{mmu})$.

5.4. 3-(2,2-Dimethylpropyl)-1-
 bis(trimethylsilyl)phosphonium-2-chloro-4-
 bis (trimethylsilyl)phosphyl-2,4-diboretane-3-ide (2c)

A mixture of $1.32 \mathrm{~g}(4.02 \mathrm{mmol})$ of 3 and $4.20 \mathrm{~g}(16.76$ $\mathrm{mmol})$ of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ was heated for 2.5 h at $130^{\circ} \mathrm{C}$ and then the volatiles were removed in vacuum. The redbrown residue was distilled at $90-100{ }^{\circ} \mathrm{C} / 0.02 \mathrm{mbar}$ to give an orange oil, containing $\mathbf{2 c}$ and other products. A solution of the orange oil in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was kept for several days at $4{ }^{\circ} \mathrm{C}$ to give crystals of yellow $\mathbf{2 c}(70 \mathrm{mg}, 4 \%)$ and traces of colourless $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2}{ }_{2} \mathrm{PBCl}_{2}\right]_{2}[26] .{ }^{1} \mathrm{H}-\mathrm{NMR}\right.$ ($200 \mathrm{MHz},\left[d_{8}\right]$-toluene, 313 K), $\delta=0.26$ (s, $9 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.29 (s, 9H, SiMe 3), 0.38 (s, 9H, SiMe $_{3}$), 0.42 (s, 9H, Si Me_{3}), $0.84\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 2.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{11} \mathrm{~B}-\mathrm{NMR}$ $\delta=39$, EI-MS: $(\mathrm{m} / \mathrm{z}, \%), 494\left(\mathrm{M}^{+}, 1\right), 458\left(\mathrm{M}^{+}-\mathrm{HCl}\right.$, $<1), 437\left(\mathrm{M}^{+}{ }_{-} \mathrm{C}_{4} \mathrm{H}_{9}, 3\right), 421\left(\mathrm{M}^{+}-\mathrm{SiMe}_{3}, 1\right), 365$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8},-\mathrm{SiMe}, 1\right), 73\left(\mathrm{SiMe}_{3}^{+}, 100\right), 57\left(\mathrm{C}_{4} \mathrm{H}_{9}^{+}, 6\right)$. HR-MS(EI): m/z $494.2094 \mathrm{M}^{+}$, Calc. ${ }^{12} \mathrm{C}_{18}{ }^{1} \mathrm{H}_{47}{ }^{11} \mathrm{~B}_{2}$ ${ }^{35} \mathrm{Cl}^{31} \mathrm{P}^{28} \mathrm{Si}_{4}$: 494.2104, $(\Delta=1.0 \mathrm{mmu})$.

5.5. 2,4-Bis ($2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetramethylphenyl)-3bis(trimethylsilyl)methyl-1,1-diphenyl-1-phosphonium-2,4-diboretane-3-ide (2d)

A solution of $0.47 \mathrm{~g}(2.14 \mathrm{mmol})$ chlorodiphenylphosphane in 10 ml pentane was added to a cooled $\left(-68{ }^{\circ} \mathrm{C}\right)$ suspension of $1.0 \mathrm{~g}(2.14 \mathrm{mmol})$ of the diboriranide $4 \mathbf{a}$ in $30 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. After warming to r.t. and 2 h stirring, all volatiles were removed, the residue digested with 40 ml of pentane, the salt separated by a D4 revised frit and washed two times with 10 ml pentane. Removal of the solvent in vacuum yielded light yellow 2d in NMR-spectroscopic purity. After about 2 weeks in $\mathrm{Et}_{2} \mathrm{O}$ at $-35^{\circ} \mathrm{C}$ colourless crystals, m.p. $181-182$, were obtained. Yield: $680 \mathrm{mg}(53 \%) \mathbf{2 d}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta=0.03(\mathrm{~s}, 18 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.17,2.27$ (each s , each $12 \mathrm{H}, o-$ and $m-\mathrm{CH}_{3}$), 7.02 (s, $2 \mathrm{H}, p$-Dur), 7.33-7.36, $7.40-7.43,7.51-7.57(\mathrm{~m}$, altogether $10 \mathrm{H}, \mathrm{H}-\mathrm{Ph}),{ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=1.4(\mathrm{q}, 6 \mathrm{C}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 19.8, 21.4 (each q, each 4C, o - and $m-\mathrm{CH}_{3}$), $30.1(\mathrm{~d}, 1 \mathrm{C}, \mathrm{HCSi}), 128.3\left(\mathrm{~d}, 4 \mathrm{C}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=10 \mathrm{~Hz}\right.$, $m-\mathrm{Ph}), 129.6\left(\mathrm{~d}, 2 \mathrm{C}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7 \mathrm{~Hz}, p-\mathrm{Ph}\right), 130.6(\mathrm{~s}$, $2 \mathrm{C}, p-\mathrm{C}$ of Dur), $133.0\left(\mathrm{~d}, 2 \mathrm{C}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=42 \mathrm{~Hz}, i-\mathrm{C}\right.$ of Ph$), 133.1\left(\mathrm{~d}, 4 \mathrm{C}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=9 \mathrm{~Hz}, o-\mathrm{C}\right.$ of Ph$)$, $134.4\left(\mathrm{~d}, 2 \mathrm{C}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=10 \mathrm{~Hz}, o-\mathrm{C}\right.$ of Dur $), 141.0$ (br., 2C, i-C of Dur), ${ }^{13} \mathrm{C}\left\{{ }^{11} \mathrm{~B}(44 \mathrm{ppm})\right\}$-NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=179.0\left(\mathrm{~d}, 1 \mathrm{C}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=79\right.$ $\mathrm{Hz}, \mathrm{CB}_{2}$), ${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta=44$.
5.6. 3-Bis(trimethylsilyl)methyl-2,4-di-t-butyl-1,1-diphenyl-1-phosphonium-2,4-diboretane-3-ide (2e)

In analogy to the procedure for $\mathbf{2 d}$, from $1.34 \mathrm{~g}(6.06$ $\mathrm{mmol})$ of chlordiphenylphosphane and 2.0 g (6.06
$\mathrm{mmol})$ of $\mathbf{4 b}$, colourless crystals, m.p. $116^{\circ} \mathrm{C}$, of $\mathbf{2 e}$ were obtained from pentane at $-30^{\circ} \mathrm{C}$. Yield: $2.15 \mathrm{~g}(72 \%)$. 2e: ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right): \quad \delta=0.07 \quad(\mathrm{~s}, \quad 18 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.07,1.13$ (each s, each 9H, C(CH3 $)_{3}$), 2.38 $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{HCSi}_{2},{ }^{1} J\left({ }^{1} \mathrm{H}^{-31} \mathrm{P}\right)=2.7 \mathrm{~Hz}\right), 7.34-7.66(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{H}-\mathrm{Ph}$), ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}$): $\delta=1.0\left(\mathrm{q}, 6 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.4$ (br. s, $1 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}$, ${ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.5 \mathrm{~Hz}$), $24.1 \quad$ (br. s, $1 \mathrm{C}, \quad C\left(\mathrm{CH}_{3}\right)_{3}$, $\left.{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.2 \quad \mathrm{~Hz}\right), \quad 28.3 \quad\left(\mathrm{~d}, \quad 1 \mathrm{C}, \quad \mathrm{HCSi}_{2}\right.$, $\left.{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=46.5 \mathrm{~Hz}\right), \quad 30.7 \quad\left(\mathrm{q}, \quad 3 \mathrm{C}, \quad \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $\left.{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.9 \quad \mathrm{~Hz}\right), \quad 31.0 \quad\left(\mathrm{q}, \quad 3 \mathrm{C}, \quad \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $\left.{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.2 \quad \mathrm{~Hz}\right), \quad 128.3 \quad(\mathrm{~d}, \quad 4 \mathrm{C}, \quad m-\mathrm{C}$, $\left.{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=10.5 \mathrm{~Hz}\right), 129.1(\mathrm{~d}, 2 \mathrm{C}, p-\mathrm{C}), 131.9(\mathrm{~s}$, $2 \mathrm{C}, i-\mathrm{C},{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=49.6 \mathrm{~Hz}$), $133.4(\mathrm{~d}, 4 \mathrm{C}, o-\mathrm{C}$, ${ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=10.4 \mathrm{~Hz}$), 171.2 (br., s, $1 \mathrm{C}, \mathrm{CB}_{2}$, $\left.{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=82.1 \mathrm{~Hz}\right),{ }^{11} \mathrm{~B}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$: $\delta=47,{ }^{31} \mathrm{P}$-NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-39.6$.
5.7. 3-Bis(trimethylsilyl)methyl-2,4-di-t-butyl-1,1-diphenyl-1-arsonium-2,4-diboretane-3-ide (2f)

Analogously to the procedure for $\mathbf{2 e}$, employing 1.33 g (5.0 mmol) chlorodiphenylarsane and 1.65 g (5.0 $\mathrm{mmol}) \mathbf{4 b}$ gave light yellow crystals, m.p. $95^{\circ} \mathrm{C}$ (dec.) of $\mathbf{2 f}$ from 10 ml pentane. Yield: $1.77 \mathrm{~g}(66.1 \%)$. 2f: ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=0.07\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.07$, 1.10 (each s, each $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCSi}_{2}\right)$, 7.33-7.56 (m, 10H, H-Ph) ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz , $\left.\mathrm{CDCl}_{3},-35^{\circ} \mathrm{C}\right): \delta=0.8\left(\mathrm{q}, 6 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.1,24.7$ (each s, each $\left.1 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 26.1\left(\mathrm{~d}, 1 \mathrm{C}, \mathrm{HCSi}_{2}\right.$, $\left.{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right)=102.4 \mathrm{~Hz}\right), 30.4\left(\mathrm{q}, 6 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 128.6\right.$ (d, 2C, $p-\mathrm{C}), 128.7(\mathrm{~d}, 4 \mathrm{C}, m-\mathrm{C}), 133.0(\mathrm{~d}, 4 \mathrm{C}, o-\mathrm{C})$, 134.0 (s, 2C, $i-\mathrm{C}$), 156.9 (br., s, 1C, CB ${ }_{2}$), ${ }^{11}$ B-NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=54$.

5.8. 3-Bis(trimethylsilyl)methyl-2,4-di-t-butyl-1-phenyl-1-phospha-2,4-diboretane-3-ide (2g)

$0.80 \mathrm{~g}(1.63 \mathrm{mmol})$ of compound $\mathbf{2 e}$ dissolved in 8 ml THF were added to a suspension of $0.12 \mathrm{~g}(17.3 \mathrm{mmol})$ Li-powder in 15 ml of THF. The reaction mixture slowly turned dark red. After 4 h , excess Li metal was separated by a reversed frit and the filtrate evaporated in vacuum. Orange solid, yield 0.61 g (87.4%). 2g: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left[d_{10}\right]-$ DME, $25^{\circ} \mathrm{C}$): $\delta=-0.15,0.10$ (each s, each 9 H , $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.83,0.90$ (each s, each $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.11$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{HCSi}_{2},{ }^{1} J\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)=104.2 \mathrm{~Hz}\right.$), 6.72, 7.30 (each m , altogether $5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\left(\left[d_{10}\right]-\mathrm{DME}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta=1.2,2.8$ (each q, each $\left.3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.3$ $\left(\mathrm{dd}, 1 \mathrm{C}, \mathrm{HCSi}_{2},{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=17.8 \mathrm{~Hz},{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right)=\right.$ 104.1 Hz), 32.9, 33.9 (each dq, each 3C, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, $\left.{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.7 \quad \mathrm{~Hz}\right), \quad 123.1 \quad(\mathrm{dd}, \quad 1 \mathrm{C}, \quad p-\mathrm{C}$, $\left.{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right)=156.7 \mathrm{~Hz}\right), \quad 125.8 \quad(\mathrm{dd}, \quad 2 \mathrm{C}, \quad m-\mathrm{C}$, $\left.{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=3.8 \mathrm{~Hz},{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right)=157.4 \mathrm{~Hz}\right), 136.3$ $\left(\mathrm{dd}, 2 \mathrm{C}, o-\mathrm{C},{ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=14.9 \mathrm{~Hz},{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right), 156.2\right.$ $\mathrm{Hz}), 155.4\left(\mathrm{~d}, 1 \mathrm{C}, i-\mathrm{C},{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=64.8 \mathrm{~Hz}\right),{ }^{11} \mathrm{~B}-$

NMR ($\left[d_{10}\right]$-DME, $25^{\circ} \mathrm{C}$): $\delta=38,{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\left[d_{10}\right]-\right.$ DME, $25^{\circ} \mathrm{C}$): $\delta=-137.4$.
5.9. 2,5-Bis (trimethylsilyl)-1,1-dimethyl-2-(2', $3^{\prime}, 5^{\prime}, 6^{\prime}-$ tetramethylphenyl)-4-\{[(2, $3^{\prime}, 5^{\prime}, 6^{\prime}$ tetramethylphenyl) dimethylamino Jboryl\}-(deloc-2,3,5)-1-azonium-2,5-diborolane-3-ide (5a)
1.06 g (10.6 mmol) bis(dimethylamino)borane were added to a solution of $3.38 \mathrm{~g}(7.34 \mathrm{mmol})$ of compound 6 in 150 ml pentane at $-30^{\circ} \mathrm{C}$. After warming to r.t. and 16 h stirring, the volume was reduced to 10 ml and cooled to $-30^{\circ} \mathrm{C}$ yielding colourless crystals, m.p. $148^{\circ} \mathrm{C}$. Yield: $2.8 \mathrm{~g}(70 \%) 7 \mathbf{7 b}:{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}$): $\delta=-0.22,-0.10$ (each s, each 9 H , $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.27,2.28,2.30,2.32,2.47$ (each s, altogether $24 \mathrm{H}, o-$ and $m-\mathrm{CH}_{3}$), 2.35, 2.76, 2.81, 3.27 (each s, each $3 \mathrm{H}, \mathrm{NMe}_{2}$), 6.96, 7.02 (each s , each $1 \mathrm{H}, p-\mathrm{H}$), ${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}$): $\delta=0.2,0.5$ (each q , each 3C, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.0,20.1,20.2,20.4,20.5,20.6,22.9$ (each q, altogether $8 \mathrm{C}, o$ - and $m-\mathrm{CH}_{3}$), 32.1 (br. d, 1 C , $\mathrm{B}_{2} \mathrm{CH}, J=115 \mathrm{~Hz}$), 39.2, 41.9, 44.6, 44.7 (each q, each $1 \mathrm{C}, \mathrm{NMe}_{2}$), 75.4 (br. s, 1C, CSiMe_{3}), 129.0, 130.3 (each d, each 1C, $p-\mathrm{C}$), 132.2, 132.5, 132.6, 132.8, 132.9, 133.9, 136.2, 136.5 (each s, each 1C, o - and $m-\mathrm{C}$), 138.4, 147.1 (each br. s, each $1 \mathrm{C}, i-\mathrm{C}$), ${ }^{11} \mathrm{~B}$-NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta=-7,30,43$.
5.10. 4,4-Bis(trimethylsilyl)-1-($2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-$ tetramethylphenyl)-2-diethylamino-3-\{[(2', $3^{\prime}, 5^{\prime}, 6^{\prime}-$ tetramethylphenyl) dimethylamino Jboryl\}-3-dehydro-1,2μH-(deloc-1,2,3)-1,2-diboretane (7b)
1.98 g (12.69 mmol) bis(diethylamino)borane were added to a solution of $5.82 \mathrm{~g}(12.69 \mathrm{mmol})$ of compound $\mathbf{6}$ in 200 ml pentane at r.t. After 7 h stirring, all volatiles were removed and the residue crystallized from n hexane at $-30^{\circ} \mathrm{C}$. Colourless crystals, m.p. $120^{\circ} \mathrm{C}$ (dec.). Yield: 4.1g (53\%) 5a: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\mathrm{CDCl}_{3},-10{ }^{\circ} \mathrm{C}$): $\delta=-0.47,0.07$ (each s, each 9 H , $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.95,0.96,1.19,1.22$ (each t , each 3 H , $\mathrm{NCH}_{2} \mathrm{CH}_{3}$) 2.21, 2.23, 2.24, 2.27, 2.29, 2.39, 2.40, 2.54 (each s, altogether $24 \mathrm{H}, o$ - and $m-\mathrm{CH}_{3}$), 2.95-3.10, 3.16-3.26, 3.82-3.87, 4.06-4.10 (each m, altogether 8H, $\mathrm{NCH}_{2} \mathrm{Me}$), $3.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{BHB}), 6.94,6.97$ (each s , each $1 \mathrm{H}, p-\mathrm{H}),{ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3},-10{ }^{\circ} \mathrm{C}$): $\delta=$ 2.4, 3.2 (each q, each $\left.3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 13.6,13.7,14.5,15.1$ (each q, each $1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), 14.8 (br. s, $1 \mathrm{C}, \mathrm{CSi}_{2}$), 20.0, 20.2, 20.6, 20.7, 20.7, 20.8, 22.8 (each q, altogether $8 \mathrm{C}, o-$ and $m-\mathrm{CH}_{3}$), 35.8 (br. s, 1C, $\mathrm{B}_{2} \mathrm{C}$), 39.7, 41.1, 42.3, 45.5 (each t , each $1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{Me}$), 129.7, 130.5 (each d, each 1C, $p-\mathrm{C}$), 132.2, 132.7, 132.9, 134.2, 135.2, 137.1, 139.4 (each s, each 1C, o - and m-C), 135.9, 147.3 (each br. s, each $1 \mathrm{C}, i-\mathrm{C}$), ${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta=-6,38(2 \mathrm{~B})$.
5.11. Generation of the trishomoaromatic trans-2,5bis(trimethylsilyl)-2,6-bis(2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetramethylphenyl)-4-trimethylsilylmethyl-1-oxa-2,4,6-triboracyclohexane-(deloc-2,4,6)-dianion (12a)
6.6 mmol lithiumnaphtalinide (0.44 ml of a 1.57 molar THF solution) was added to a precooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $0.19 \mathrm{~g}(3.3 \mathrm{mmol})$ trans $\mathbf{- 1 3 a}$ in $15 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. The progress of the reaction was monitored by ${ }^{11} \mathrm{~B}$ NMR spectroscopy at $-60^{\circ} \mathrm{C}$. After 0.5 h the broad peaks at 73 and 51 ppm of 13a were replaced by three sharp peaks at $-12,-15$ and -24 ppm (intensity ratio $1: 1: 1)$ for $\mathbf{1 2 a}$. These signals disappeared rapidly upon warming to $-40^{\circ} \mathrm{C}$.

5.12. trans-2,5-Bis(trimethylsilyl)methyl-2,6-

bis($2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetramethylphenyl)-4-trimethylsilylmethyl-1-oxa-2,4,6-triboracyclohexane (13a)
$3.7 \mathrm{ml}(10 \mathrm{mmol})$ of HCl in $\mathrm{Et}_{2} \mathrm{O}$ were added dropwise to a suspension of $3.0 \mathrm{~g}(5.11 \mathrm{mmol})$ of $\mathbf{1 4 a} \cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}$ in $30 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$ precooled to $-50^{\circ} \mathrm{C}$. After 3 h stirring, the solvent was removed under high vacuum at $-10^{\circ} \mathrm{C}$, the residue digested with ca. 20 ml pentane, LiCl separated by a D3 reversed frit and washed two times with 10 ml pentane. The combined filtrates were concentrated under high vacuum and cooled to $-35^{\circ} \mathrm{C}$. Colourless crystals, yield $1.90 \mathrm{~g}(65 \%)$. trans 13a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta=0.00$ (s, $\left.18 \mathrm{H},\left(\mathrm{SiMe}_{3}\right)_{2}\right), 0.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.83,1.24$ (each d, each $1 \mathrm{H}, \mathrm{CH}_{2},{ }^{1} J(\mathrm{HH})=12.0 \mathrm{~Hz}$), 2.21, 2.32 (each s, each $12 \mathrm{H}, o-$ and $\left.m-\mathrm{CH}_{3}\right), 2.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}_{2} \mathrm{CH}\right), 6.96(\mathrm{~s}$, $2 \mathrm{H}, p-\mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=2.5$ (3C, SiMe_{3}), $2.6\left(6 \mathrm{C}, \mathrm{SiMe}_{3}\right)$ 20.2, 20.6 (each 4C, o - and $\left.m-\mathrm{CH}_{3}\right), 22.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 47.2$ (br., $2 \mathrm{C}, \mathrm{B}_{2} \mathrm{CH}$, $\left.{ }^{1} J(\mathrm{CH})=103 \mathrm{~Hz}\right), 132.3,133.5,136.6(10 \mathrm{C}, o-, m-\mathrm{a}$. $p-\mathrm{C}), 141.0$ (br., 2C, i-C), ${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta=73,51(2 \mathrm{~B})$.
5.13. 2,5-Bis(trimethylsilyl)methyl-2,6-bis($2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-$ tetramethylphenyl)-4-trimethylsilylmethyl-1-oxa-2,4,6-triboracyclohexane-3,5-diide (14a)
$0.2 \mathrm{~g}(28.8 \mathrm{mmol}) \mathrm{Li}$ dust were added to a stirred solution of $4.0 \mathrm{~g}(6.98 \mathrm{mmol}) \mathbf{1 5 a}$ in $60 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. The progress of the reaction was monitored by ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ spectroscopy. After 2 h the signals of 15a at 72 and 57 ppm disappeared and two new peaks at 62 and 42 ppm appeared. Excess Li was separated by a D3 reversed frit, the volume of solvent reduced to 10 ml and the solution cooled to $-35^{\circ} \mathrm{C}$. Colourless crystals, yield 0.79 g (20%). 14a $\cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta=0.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.64\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, $1.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10,2.12,2.33,2.58$ (each s, each 6 H , $o-$ and $\left.m-\mathrm{CH}_{3}\right), 6.77(\mathrm{~s}, 2 \mathrm{H}, p-\mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=3.3\left(3 \mathrm{C}, \mathrm{SiMe}_{3}\right), 6.0\left(6 \mathrm{C}, \mathrm{SiMe}_{3}\right)$,
18.0 (br., 1C, $\mathrm{CH}_{2} \mathrm{~B}$), 19.4, 20.1, 21.1, 21.7 (each 2C, o and $\left.m-\mathrm{CH}_{3}\right), 130.3,132.6,132.9,134.2,136.4(10 \mathrm{C}, o-$, m - and $p-\mathrm{C}$), 150.0 (br., 2C, i-C), the signal for the skeletal carbon atoms could not be observed under these conditions. ${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right): \delta=42$, 61.
5.14. 2,5-Bis(trimethylsilyl)methyl-2,6-bis($2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}-$ tetramethylphenyl)-4-trimethylsilylmethyl-1-oxa-2,4,6triborabicyclo[3.1.0]hexane (15a)
$5.3 \mathrm{ml}(4.45 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{Li}\left(0.84 \mathrm{M} \mathrm{Et}_{2} \mathrm{O}\right.$ solution) were added to a solution of $2.32 \mathrm{~g}(4.45 \mathrm{mmol})$ of compound $\mathbf{1 5 b}$ in 50 ml pentane dropwise. After stirring over night, all volatiles were removed under high vacuum. The residue was digested with 20 ml pentane, LiCl separated by a reversed frit, washed two times with 10 ml pentane. The volume of the combined filtrates was reduced to 10 ml and cooled to $-35^{\circ} \mathrm{C}$. Colourless crystals. Yield: $1.67 \mathrm{~g}(72 \%)$. 15a: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=0.11$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.23 ($\mathrm{s}, 9 \mathrm{H}$, SiMe_{3}) $1.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.17,2.19,2.30$ (each s , altogether $24 \mathrm{H}, o$ - and $\left.m-\mathrm{CH}_{3}\right), 6.92(\mathrm{~s}, 2 \mathrm{H}, p-\mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=1.8\left(3 \mathrm{C}, \mathrm{SiMe}_{3}\right), 2.1$ ($6 \mathrm{C}, \mathrm{SiMe}_{3}$), 13.9 (br., $1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{~B}$), 19.4, 19.5, 20.4, 21.2 (each $2 \mathrm{C}, o$ - and $m-\mathrm{CH}_{3}$), 46.7 (br., 2C, $\mathrm{C}_{3,5}$) 131.3, 132.6, 133.8, 134.4 (10C, $o-$, m - a. $p-\mathrm{C}$), 140.3 (br., 2C, i C), ${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta=72,59(2 \mathrm{~B})$.

5.15. X-ray structure determinations of $2 \boldsymbol{a}, \mathbf{2 c}, 2 d \cdot E t_{2} \mathrm{O}$, 5a, 7b $\cdot 0.5 C_{6} H_{14}, 13 b, 14 a \cdot L i_{2} \cdot\left(E t_{2} O\right)_{3}$

Crystal data and details of the structure determinations are listed in Tables 2 and 3. The structures were solved by direct methods (SHELXs-86 or -97) [27] and refined by least-squares methods based on F^{2} against all measured reflections (SHELXL-97 and SHELXTL NT5.1) [27]. For 2a and 2c a semiempirical absorption correction based on equivalent reflections was applied. All non-hydrogen atoms were refined using anisotropic displacement parameters. The structure of $\mathbf{2 d} \cdot \mathrm{Et}_{2} \mathrm{O}$ shows two geometrically very similar independent molecules and two ether molecules in the asymmetric unit, the listed bond lengths and angles are average values. In $7 \mathbf{b} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$ one of the NEt_{2} groups is disordered, the n-hexane solvent molecule is placed on an inversion center and shows disorder or dynamical behaviour as well. $\mathbf{1 4 a} \cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}$ crystallized as a (100) reflection twin. With a monoclinic angle close to 90° the structure could be refined as pseudomerohedral twin (refined twin ratio $28.2(1) \%$). The very large asymmetric unit contains two independent moieties, differing mainly in the orientation of the ether molecules coordinated to the Li atoms. The geometrical parameters are listed for the first unit only because the second one shows disorder of the ether ethyl residues.

Table 3
Crystallographic and experimental data for $\mathbf{2 a}, \mathbf{2 c}, \mathbf{2 d} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathbf{5 a}, \mathbf{7 b} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}, \mathbf{1 3 b}$ and $\mathbf{1 4 a} \cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}$

	2a	2 c	2d $\cdot \mathrm{Et}_{2} \mathrm{O}$	5a	$7 \mathrm{~b} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$	13b	$\mathbf{1 4 a} \cdot \mathrm{Li} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}$
Formula	$\mathrm{C}_{22} \mathrm{H}_{54} \mathrm{~B}_{4} \mathrm{Cl}_{1} \mathrm{~N}_{3} \mathrm{Si}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{47} \mathrm{~B}_{2} \mathrm{Cl}_{1} \mathrm{P}_{2} \mathrm{Si}_{4}$	$\mathrm{C}_{44} \mathrm{H}_{65} \mathrm{~B}_{2} \mathrm{OPSi}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{~B}_{3} \mathrm{~N}_{2} \mathrm{Si}_{2}$	$\mathrm{C}_{39} \mathrm{H}_{72} \mathrm{~B}_{3} \mathrm{~N}_{2} \mathrm{Si}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{~B}_{3} \mathrm{OSi}_{3}$	$\mathrm{C}_{44} \mathrm{H}_{85} \mathrm{~B}_{3} \mathrm{Li}_{2} \mathrm{O}_{4} \mathrm{Si}_{3}$
Formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	495.55	494.93	718.73	558.41	657.60	574.48	808.70
Colour, habit	Colourless, irregular	Colourless, prism	Colourless platelet	Colourless, block	Colourless, octahedral	Colourless, irregular	Colourless, irregular, (100) twin
Crystal size (mm^{3})	$0.56 \times 0.48 \times 0.40$	$0.25 \times 0.25 \times 0.10$	$0.55 \times 0.35 \times 0.05$	$\begin{aligned} & 0.40 \times 0.30 \times \\ & 0.30 \end{aligned}$	$0.50 \times 0.25 \times 0.25$	$0.65 \times 0.50 \times 0.45$	$0.48 \times 0.33 \times 0.24$
Crystal system	Triclinic	Orthorhombic	Triclinic	Triclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P \overline{1}$ (No. 2)	Pbca (No. 61)	$P \overline{1}$ (No. 2)	$P \overline{1}$ (No. 2)	$P 2{ }_{1} / c$ (No. 14)	$P \overline{1}$ (No. 2)	$I a($ No. 9)
$a(\AA)$	10.0555(3)	16.323(1)	15.342(1)	9.080(1)	9.639 (1)	11.724(1)	17.415(1)
b (${ }_{\text {(}}$)	10.8553(3)	$12.3956(8)$	18.647(2)	11.338(1)	20.352(2)	12.194(1)	18.202(1)
$c(\AA)$	16.2028(4)	30.922(2)	18.714(1)	18.745(1)	21.574(2)	13.500(1)	33.547(2)
$\alpha\left({ }^{\circ}\right)$	106.395(2)		69.26(1)	77.46(1)		94.31(1)	
$\beta\left({ }^{\circ}\right)$	92.056(3)		67.69(1)	82.68(1)	97.49(1)	93.82(1)	90.53(1)
$\gamma\left({ }^{\circ}\right.$)	113.043(2)		68.96(1)	72.99(1)		107.87(1)	
$V\left(\AA^{3}\right)$	1539.72(7)	6256.7(7)	4473.2(6)	1797.1(3)	4196.1(5)	1823.5(3)	10 634(1)
Z	2	8	4	2	4	2	8
Calculated density ($\mathrm{Mg} \mathrm{m}-{ }^{3}$)	1.069	1.051	1.067	1.032	1.041	1.046	1.010
Absorption $\mu\left(\mathrm{mm}^{-1}\right)$	0.217	0.382	0.145	0.120	0.112	0.152	0.123
Temperature (K)	173(1)	173(1)	193(1)	190(1)	193(1)	193(1)	193(1)
$\lambda\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)(\AA)$	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Diffractometer	SMART (Bruker)	SMART (Bruker)	IPDS (Stoe)				
θ max (${ }^{\circ}$)	28.3	26.4	24.1	25.9	26.0	25.9	24.0
Reflections: total, unique, observed [$>$ $4 \sigma(F)$]	20361, 7454, 5847	$38585,6408,4629$	$\begin{aligned} & 36494,13386, \\ & 6423 \end{aligned}$	$\begin{aligned} & 14965,6503, \\ & 3675 \end{aligned}$	32795, 8152, 5221	18093, 6620, 4926	39454, 16332, 9463
No. of parameters	505	432	938	374	444	385	1019
$R(F>4 \sigma(F))$	0.0387	0.0393	0.0475	0.0362	0.0420	0.0404	0.0550
$w R_{2}$ (all reflections)	0.1078	0.1016	0.1111	0.0847	0.1085	0.1076	0.1252
GOF, S	1.029	1.039	0.799	0.821	0.918	0.938	0.880
Residual density (e $\AA \square^{3}$)	0.53, -0.35	0.35, -0.32	0.62, -0.29	0.17, -0.18	0.23, -0.30	0.32, -0.19	0.52, -0.23

Due to the twinning and disorder problems, the precision of geometrical parameters is reduced for this structure.

6. Supplementary material

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center: CCDC-204528 (2a), CCDC-204529 (2c), CCDC$204530\left(\mathbf{2 d} \cdot \mathrm{Et}_{2} \mathrm{O}\right), \mathrm{CCDC}-204531$ (5a), CCDC-204532 (7b•0.5C6 H_{14}), CCDC-204533 (13b), CCDC-204534 $\left(\mathbf{1 4 a} \cdot \mathrm{Li}_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{3}\right)$. Copies of the data can be obtained free of charge and by application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223/336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 247 and FSP Polyeder), the Fonds der Chemischen Industrie, the University of Georgia, and National Science Foundation Grant CHE-0209857.

References

[1] For an up to date review on homoaromaticity, see: R.V. Williams, Chem. Rev. 101 (2001) 1185 and literature cited therein. Also see: F. Stahl, P.v.R. Schleyer, H.J. Jiao, H.F. Schaefer, K.H. Chen, N.L. Allinger, J. Org. Chem. 67 (2002) 6599.
[2] (a) S. Winstein, M. Shatavsky, C. Norton, R.B. Woodward, J. Am. Chem. Soc. 77 (1955) 4183;
(b) S. Winstein, M. Shatavsky, J. Am. Chem. Soc. 78 (1956) 592; (c) W.G. Woods, R.A. Carboni, J.D. Roberts, J. Am. Chem. Soc. 78 (1956) 5653.
[3] S. Winstein, J. Sonnenberg, L. deVries, J. Am. Chem. Soc. 81 (1959) 6523; S. Winstein, J. Am. Chem. Soc. 81 (1959) 6524: used the term 'homo-aromatic'; review: S. Winstein, in: G.A. Olah, P.V.R. Schleyer, (Eds.), Carbonium Ions, vol. III, Wiley, New York 1972, p. 965.
[4] (a) D.E. Applequist, J.D. Roberts, J. Am. Chem. Soc. 78 (1956) 4012;
(b) E.F. Kiefer, J.D. Roberts, J. Am. Chem. Soc. 84 (1962) 784.
[5] For examples of internally charge compensated homoaromatic carbocations, see: C. Krüger, P.J. Roberts, Y.-H. Tsay, J.B. Koster, J. Organomet. Chem. 78 (1974) 69; W.J. Evans, K.J. Forrestal, J.W. Ziller, J. Am. Chem. Soc. 117 (1995) 12635.
[6] M. Hofmann, D. Scheschkewitz, A. Ghaffari, G. Geiseler, W. Massa, H.F. Schaefer, III, A. Berndt, J. Mol. Model. 6 (2000) 257.
[7] (a) P. Paetzold, B. Redenz-Stormanns, R. Boese, M. Bühl, P.v.R. Schleyer, Angew. Chem. 102 (1990) 1059;
(b) P. Paetzold, B. Redenz-Stormanns, R. Boese, M. Bühl, P.V.R. Schleyer, Angew. Chem. Int. Ed. Engl. 29 (1990) 1059;
(c) M. Müller, U. Englert, P. Paetzold, Chem. Ber. 128 (1995) 1105.
[8] K.J. Szabo, E. Kraka, D. Cremer, J. Org. Chem. 61 (1996) 2783.
[9a] A. Ziegler, H. Pritzkow, W. Siebert, Eur. J. Inorg. Chem. (2001) 387.
[9b] M.J. Bayer, H. Pritzkow, W. Siebert, Eur. J. Inorg. Chem. (2002) 1293.
[10] (a) R. Wehrmann, H. Meyer, A. Berndt, Angew. Chem. 97 (1985) 779;
(b) R. Wehrmann, H. Meyer, A. Berndt, Angew. Chem. Int. Ed. Engl. 24 (1985) 788.
[11] (a) P. Willershausen, C. Kybart, N. Stamatis, W. Massa, M. Bühl, P.v.R. Schleyer, A. Berndt, Angew. Chem. 104 (1992) 1278;
(b) P. Willershausen, C. Kybart, N. Stamatis, W. Massa, M. Bühl, P.V.R. Schleyer, A. Berndt, Angew. Chem. Int. Ed. Engl. 31 (1992) 1238.
[12] (a) A. Berndt, Angew. Chem. 105 (1993) 1034;
(b) A. Berndt, Angew. Chem. Int. Ed. Engl. 32 (1993) 985.
[13] (a) D. Steiner, C. Balzereit, H.-J. Winkler, N. Stamatis, M. Hofmann, P.v.R. Schleyer, W. Massa, A. Berndt, Angew. Chem. 106 (1994) 2391;
(b) D. Steiner, C. Balzereit, H.-J. Winkler, N. Stamatis, M. Hofmann, P.V.R. Schleyer, W. Massa, A. Berndt, Angew. Chem. Int. Ed. Engl. 33 (1994) 2303.
[14] (a) G.E. Herberich, W. Boveleth, B. Heßner, M. Hostalek, D.P. Köffer, H. Ohst, D. Söhnen, Chem. Ber. 119 (1986) 420;
(b) G.E. Herberich, H.-W. Marx, T. Wagner, Chem. Ber. 127 (1994) 2135.
[15] (a) D. Scheschkewitz, A. Ghaffari, P. Amseis, M. Unverzagt, G. Subramanian, M. Hofmann, P.v.R. Schleyer, H.F. Schaefer, III, G. Geiseler, W. Massa, A. Berndt, Angew. Chem. 112 (2000) 1329;
(b) D. Scheschkewitz, A. Ghaffari, P. Amseis, M. Unverzagt, G. Subramanian, M. Hofmann, P.V.R. Schleyer, H.F. Schaefer, III, G. Geiseler, W. Massa, A. Berndt, Angew. Chem. Int. Ed. Engl. 39 (2000) 1272.
[16] (a) P.J. Fagan, W.A. Nugent, J.C. Calabrese, J. Am. Chem. Soc. 116 (1994) 1880;
(b) C. Balzereit, H.-J. Winkler, W. Massa, A. Berndt, Angew. Chem. 106 (1994) 2394;
(c) C. Balzereit, H.-J. Winkler, W. Massa, A. Berndt, Angew. Chem. Int. Ed. Engl. 33 (1994) 2306.
[17] (a) W. Lößlein, H. Pritzkow, P.V.R. Schleyer, L.R. Schmitz, W. Siebert, Angew. Chem. 112 (2000) 1333;
(b) W. Lößlein, H. Pritzkow, P.V.R. Schleyer, L.R. Schmitz, W. Siebert, Angew. Chem. Int. Ed. Engl. 39 (2000) 1276;
(c) W. Lößlein, H. Pritzkow, P.v.R. Schleyer, L.R. Schmitz, W. Siebert, Eur. J. Inorg. Chem. (2001) 1949.
[18] A. Berndt, T. Happel, Y. Sahin, G. Geiseler, W. Massa, M. Hofmann, P.v.R. Schleyer, in: M.G. Davidson, A.K. Hughes, T.B. Marder, K. Wade (Eds.), Contemporary Boron Chemistry (Proceedings of IMEBORON X), The Royal Chemical Society, Cambridge, UK, 2000, p. 485.
[19] (a) T. Laube, J. Am. Chem. Soc. 111 (1989) 9224;
(b) T. Laube, C. Lohse, J. Am. Chem. Soc. 116 (1994) 9001;
(c) T. Laube, Acc. Chem. Res. 28 (1995) 399;
(d) W.J. Evans, K.J. Forrestal, J.W. Ziller, J. Am. Chem. Soc. 117 (1995) 12635.
[20] (a) G.E. Herberich, C. Ganter, L. Wesemann, R. Boese, Angew. Chem. 102 (1990) 914;
(b) G.E. Herberich, C. Ganter, L. Wesemann, R. Boese, Angew. Chem. Int. Ed. Engl. 29 (1990) 912;
(c) G. Knörzer, H. Seyffer, W. Siebert, Z. Naturforsch. B 45 (1990) 1136;
(d) G. Gabbert, W. Weinmann, H. Pritzkow, W. Siebert, Angew. Chem. 104 (1992) 1670;
(e) G. Gabbert, W. Weinmann, H. Pritzkow, W. Siebert, Angew. Chem. Int. Ed. Engl. 31 (1992) 1603;
(f) G. Gabbert, H. Pritzkow, M. Kaschke, W. Siebert, Chem. Ber. 127 (1994) 1363.
[21] (a) A. Krämer, J.K. Uhm, S.E. Garner, H. Pritzkow, W. Siebert, Z. Naturforsch. B 45 (1990) 1019;
(b) R. Littger, H. Nöth, M. Thomann, M. Wagner, Angew. Chem. 105 (1993) 295;
(c) R. Littger, H. Nöth, M. Thomann, M. Wagner, Angew. Chem. Int. Ed. Engl. 32 (1993) 295;
(d) W. Maringgele, A. Heine, M. Noltemeyer, A. Meller, J. Organomet. Chem. 468 (1994) 25.
[22] (a) A. Haaland, Angew. Chem. 101 (1989) 1017, especially p. 1026.;
(b) A. Haaland, Angew. Chem. Int. Ed. Engl. 28 (1989) 992.
[23] T. Deforth, M. Kaschke, H. Stock, H. Pritzkow, W. Siebert, Z. Naturforsch. B 52 (1997) 823.
[24] (a) G.E. Herberich, B. Heßner, M. Hostalek, Angew. Chem. 98 (1986) 637;
(b) G.E. Herberich, B. Heßner, M. Hostalek, Angew. Chem. Int. Ed. Engl. 25 (1986) 642.
[25] P.v.R. Schleyer, H. Jiao, N.J.R.van E. Hommes, V.G. Malkin, O.L. Malkina, J. Am. Chem. Soc. 119 (1997) 12669.
[26] M.S. Lube, R.L. Wells, Inorg. Chem. 35 (1996) 5007.
[27] (a) G.M. Sheldrick, shelxs-86 and -97, shelxl-97, Programs for the solution and refinement of crystal structures, University of Göttingen 1986, 1997.;
(b) G.M. Sheldrick, shelxtl NT5.1, Bruker AXS, Madison, WI, 1999.

[^0]: * Corresponding authors. Fax: +49-6421-28-28917 (A.B.). Fax: + 49-6221-54-5609 (W.S.).

 E-mail addresses: schleyer@chem.uga.edu (P.v.R. Schleyer), ci5@ix.urz.uni-heidelberg.de (W. Siebert), berndt@chemie.unimarburg.de (A. Berndt).
 ${ }^{1}$ Fax: +1-706-542-7514.

